Nome:

RA:

 $\mathbf{1}^{\underline{a}}$ Questão: Considere a matriz $A \in \mathbb{R}^{2 \times 5}$ dada por

$$A = \left[\begin{array}{rrrrr} 1 & 2 & 3 & 0 & 5 \\ -1 & -2 & -3 & 0 & -5 \end{array} \right]$$

- a) Determine o rank de A
- b) Determine a dimensão do espaço nulo de A
- c) Obtenha uma base para o range de A
- d) Obtenha uma base para o espaço nulo de A

1) (1.0)	
2) (1.0)	
3) (1.0)	
4) (1.0)	
5) (1.0)	
6) (1.0)	
7) (1.0)	
8) (1.0)	

P1) _____

 $2^{\underline{a}}$ Questão: Determine os valores de $a \in \mathbb{R}$ para que o sistema linear abaixo possua solução (uma ou mais de uma)

$$2ax_1 - 3x_2 = 2
2x_1 + 5x_2 = 3
-2x_1 + x_2 = -a$$

 $\mathbf{3}^{\underline{a}}$ Questão: Considere a transformação linear descrita pela matriz $A \in \mathbb{R}^{2 \times 2}$ dada por

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

a) Encontre a representação da transformação na base $\mathcal{V} = \{v_1, v_2\}$ com

$$v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 , $v_2 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$

b) Encontre a matriz de mudança de base que leva de \mathcal{V} para a base $\mathcal{W} = \{w_1, w_2\}$ dada por

$$w_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 , $w_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

c) Encontre as representações do vetor x

$$x = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

 ${\bf 4}^{\underline{a}}$ Questão: Determine as funções $\rho_0(t)$ e $\rho_1(t)$ que satisfazem a equação

$$\exp(At) = \rho_0(t)\mathbf{I} + \rho_1(t)A$$

sendo

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \qquad \lambda_1 = -1 \ , \ \lambda_2 = -2$$

e λ_1 , λ_2 os autovalores de A.

- $\mathbf{5}^{\underline{a}}$ Questão: Sabendo que a forma de Jordan de uma matriz $A \in \mathbb{R}^{n \times n}$ é diagonal com autovalores positivos, assinale V (verdadeiro) ou F (falso) para as afirmações abaixo:
- a) A matriz A é necessariamente simétrica.
- (b) A matriz A é necessariamente definida positiva.
- c) Os autovalores de A são necessariamente distintos.
- Os autovalores de A possuem multiplicidade algébrica igual à multiplicidade geométrica.
- O espaço nulo de $(A \lambda \mathbf{I})$ possui dimensão n para todo λ autovalor de A.
- f) O polinômio mínimo de A é de grau estritamente menor do que o seu polinômio característico.
- g) Todos os autovetores de A são linearmente independentes.
- $6^{\underline{a}}$ Questão: Determine $\cosh(A)$ com

$$A = \begin{bmatrix} 0 & \pi/4 \\ -\pi/4 & 0 \end{bmatrix} \qquad \lambda_1 = j\pi/4 , \ \lambda_2 = -j\pi/4$$

sendo $j = \sqrt{-1}$ e λ_1 , λ_2 os autovalores de A.

Obs.: $\cosh(\lambda) = \frac{1}{2}(\exp(\lambda) + \exp(-\lambda))$

 $7^{\underline{a}}$ Questão: Considere $A \in \mathbb{R}^{n \times n}$, cujos elementos são denotados por a_{ij} . Define-se o traço da matriz A como

$$\mathbf{Tr}(A) = \sum_{i=1}^{n} a_{ii}$$

Mostre que $\mathbf{Tr}(AB) = \mathbf{Tr}(BA)$ para $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{m \times n}$

- $8^{\underline{a}}$ Questão: Mostre que
- a) O traço da matriz A é a soma dos autovalores de A
- b) O determinante de A é igual ao produto dos seus autovalores