Corrigendum to "Robust \mathscr{H}_2 and \mathscr{H}_∞ control for positive continuous-time uncertain linear systems" [Journal of The Franklin Institute, 359(10):4842–4855, July 2022]

Amanda Spagolla^a, Álvaro A. Lemaire^a, Cecília F. Morais^b, Ricardo C. L. F. Oliveira^{*a}, Pedro L. D. Peres^a

> ^a School of Electrical and Computer Engineering University of Campinas – UNICAMP 13083-852, Campinas, SP, Brazil.
> ^b Pontifical Catholic University of Campinas Center of Exact, Environmental and Technological Sciences 13086-900, Campinas, SP, Brazil.

Abstract

The aim of this note is to rectify incorrect statements made in [1].

In [1], Example 1, in the part concerned with the problem of \mathscr{H}_2 decentralized stated feedback control for precisely known positive continuous-time linear systems, the algorithm from [2] was incorrectly reported as infeasible in [1, Table 2]. The LMI problem [2, Equation (14)], that should produce a feasible gain *L* with decentralized structure as in [1, Equation (12)], was programmed with a block diagonal *Q* matrix and the extra constraint Le = 0, with $e = [0 \ 0 \ 0 \ 0 \ 1]'$, resulting in infeasibility. However, as kindly pointed out by the authors from [2] in a personal communication, the correct constraint is

$$Le - he'Qe = 0, \quad h = (D'D)^{-1}D'Ce$$
 (1)

Using this constraint, a feasible initial decentralized gain is obtained from [2, Equation (14)] (with \mathscr{H}_2 cost 5.6930) and, after 21 iterations, [2, Algorithm 1] converges to an \mathscr{H}_2 cost of 4.1906, as shown in the corrected Table 2.

Preprint submitted to The Journal of The Franklin Institute

^{*}This study was partially supported by the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, CNPq and São Paulo Research Foundation (FAPESP) (grant 2019/09363-5).

^{*}Corresponding author

Email address: ricfow@dt.fee.unicamp.br (Ricardo C. L. F. Oliveira*)

Moreover, contrarily to what was suggested in [1], the linear transformation in matrices A and C (needed in [2, Algorithm 1] whenever $C'_z D_z \neq 0$) does not play a role in the existence (or not) of a decentralized gain.

Table 2: \mathscr{H}_2 guaranteed costs (ρ) provided by Algorithm 1 (A1), [2] (DG) and by the methods from [3] (E-(12), E-(13) and E-(14)), considering a state-feedback gain structured as in Eq. (12).

	A1	E-(12)	E-(13)	E-(14)	DG
ρ	4.1807	4.4182	5.693	4.6545	4.1906
$(ho - ho_{A1}) / ho_{A1} (\%)$	0	+5.68	+36.17	+11.33	+0.24

References

- A. Spagolla, A. A. Lemaire, C. F. Morais, R. C. L. F. Oliveira, P. L. D. Peres, Robust *H*₂ and *H*_∞ control for positive continuous-time uncertain linear systems, Journal of The Franklin Institute 359 (10) (2022) 4842–4855.
- [2] G. S. Deaecto, J. C. Geromel, *H*₂ state feedback control design of continuous-time positive linear systems, IEEE Transactions on Automatic Control 62 (11) (2017) 5844–5849.
- [3] Y. Ebihara, P. Colaneri, J. C. Geromel, *H*₂ state-feedback control for continuous-time systems under positivity constraint, in: Proceedings of the 2019 European Control Conference, Naples, Italy, 2019, pp. 3797–3802.